

Calculations Policy 2019
Pencil and paper procedures
Key Stages 1 \& 2

The following pages show the CVPS progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE 1

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of 10 s and 1 s to develop their calculation strategies, especially in addition and subtraction.

Key language: whole, part, ones, ten, tens, number bond, add, addition, plus, total, altogether, subtract, subtraction, find the difference, take away, minus, less, more, group, share, equal, equals, is equal to, groups, equal groups, times, multiply, multiplied by, divide, share, shared equally, times-table

Addition and subtraction: Children first learn to connect addition and subtraction with counting, but they soon develop two very important skills: an understanding of parts and wholes, and an understanding of unitising 10 s , to develop efficient and effective calculation strategies based on known number bonds and an increasing awareness of place value. Addition and subtraction are taught in a way that is interlinked to highlight the link between the two operations. A key idea is that children will select methods and approaches based on their number sense. For example, in Year 1, when faced with 15-3 and 15-13, they will adapt their ways of approaching the calculation appropriately. The teaching should always emphasise the importance of mathematical thinking to ensure accuracy and flexibility of approach, and the importance of using known number facts to harness their recall of bonds within 20 to support both addition and subtraction methods.

Multiplication and division: Children develop an awareness of equal groups and link this with counting in equal steps, starting with 2 s , 5 s and 10s. In Year 2, they learn to connect the language of equal groups with the mathematical symbols for multiplication and division.
They learn how multiplication and division can be related to repeated addition and repeated subtraction to find the answer to the calculation.
In this key stage, it is vital that children explore and experience a variety of strong images and manipulative representations of equal groups, including concrete experiences as well as abstract calculations.
Children begin to recall some key multiplication facts, including doubles, and an understanding of the 2,5 and 10 times-tables and how they are related to counting.

Fractions: In Year 1, children encounter halves and quarters, and link this with their understanding of sharing. They experience key spatial representations of these fractions, and learn to recognise examples and nonexamples, based on their awareness of equal parts of a whole.
In Year 2, they develop an awareness of unit fractions and experience non-unit fractions, and they learn to write them and read them in the common format of numerator and denominator.

Concrete, pictoral and abstract is not a sequence of lessons but instead should be taught and used alongside each other simultaneously and the children use the correct stage of the process for them. All of these strategies should be used to also represent the inverse instead of saving it until the end.

Addition			
Objective and Strategies	Concrete	Pictorial	Abstract
Reception/ Year 1 Counting and adding more	Children add one more person or object to a group to find one more.	Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Use a number line to understand how to link counting on with finding one more. One more than 6 is 7 . 7 is one more than 6 .
Understandin g part-partwhole relationship	Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4 . The whole is 6 .	Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5 . The whole is 6 .	Use a part-whole model to represent the numbers. $\begin{aligned} & 6+4=10 \\ & 6+4=10 \end{aligned}$

Combining two parts to make a whole: bar model Rec/ Y1 Language Add Altogether Same as Equal to More	a) a) Use objects to add 2 numbers together. Recount the whole group Position as a bar	Use/draw pictures to add 2 numbers together. Recount the whole group Position in a line/as a bar	$\begin{array}{ll} 8+1=9 & 1+8=9 \\ 9=8+1 & 9=1+8 \end{array}$ Write numbers to add 2 numbers together. Position as a bar
Adding a single digit number Starting at the larger number and counting on Language Add Altogether Same as Equal to More	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Draw number line and write numbers on themselves	$\begin{aligned} & 5+12=17 \\ & 12+5=17 \\ & 17=5+12 \\ & 17=12+5 \end{aligned}$ Place the larger number in your head and count on the smaller number to find your answer.
Knowing and finding number bonds within 10	Break apart a group and put back together to find and form number bonds. $3+4=7$	Use five and ten frames to represent key number bonds. $5=4+1$	Use a part-whole model alongside other representations to find number bonds. Make sure to include examples where one of the parts is zero. $\begin{aligned} & 4+0=4 \\ & 3+1=4 \end{aligned}$

Adding multiples of ten	Using the vocabulary of 1 ten, 2 tens, 3 tens etc. alongside 10, 20, 30 is important, as pupils need to understand that it is a ten and not a one that is being added Adding a multiple of ten to a 2 digit number. Explore that the ones digit does not change. Set out in a line/bar model $22+10=32$	 A 100 square can support this understanding.	Teach the link to known number facts. E.g. ' $2+3$ is equal to 5 . So 2 tens +3 tens is equal to 5 tens. $\begin{aligned} & 20+30=50 \\ & 30+20=50 \\ & 50=20+30 \\ & 50=30+20 \end{aligned}$ Add the 10 s and then recombine. $\begin{aligned} & 37+20=? \\ & 30+20=50 \\ & 50+7=57 \end{aligned}$ $37+20=57$
$\begin{aligned} & \hline \text { Make ten' } \\ & \hline \text { strategy } \end{aligned}$	Start at the bigger number and use the smaller number to make ten. The colours of the beads on the bead string make it clear how many more need to be added to make ten. Also, the empty spaces on the ten frame make it clear how many more are needed to make ten.	Use pictures or a number line. Regroup or partition the smaller number to make 10 . $9+5=14$ (1) (4) (1)	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

Adding three single digit numbers (make ten first	Numicon is useful for this strategy as the children can see which pieces physically fit together to make ten.

Adding 3 digit numbers with exchanging Can use numicon, dienes or place value counters, depending on level of child's understanding	$\begin{array}{r} H T O \\ 225 \\ +157 \\ \hline \end{array}$			 10 14x $\begin{array}{r} H 1 \\ 2 \\ 22 \\ 1 \\ 15 \\ \hline 38 \end{array}$	Variation should include exchanging different columns, the use of zero in both the answer and the question and different size numbers e.g. 4 digit - 3 digit

Objective and Strategies	Concrete	Pictorial	Abstract
Reception/ Y1 Taking away ones	Children recount the whole group left after taking away the objects. First, the concrete representation should be based upon the diagram. Real objects should be placed on top of the images as one-to-one correspondence so that pupils can take them away, progressing to representing the group of ten with a tens rod and ones with ones cubes. Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. - \# O $\begin{array}{\|l\|l\|} \hline x \mid & x \\ \hline \end{array}$	$\begin{aligned} & 9-3=6 \\ & 9-\square=\square \end{aligned}$ There are \square children left.
Taking away a single digit number Counting back Children count backwards and know that the number they finish on is the answer. They do not	Counting back (using number lines or number tracks children start with 6 and count back 2.$6-2=4$1 2 3 4 5 6 7 8 9 10 Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	The same progression in addition number lines needs to be followed.	Put 13 in your head, count back 4. What number are you at? Use your fingers to hlp.

	Use a bead string to subtract 1 s efficiently. $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$	$\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	$\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
Subtracting 10s and 1s	For example: 18-12 Subtract 12 by first subtracting the 10 , then the remaining 2. First subtract the 10 , then take away 2.	For example: 18-12 Use ten frames to represent the efficient method of subtracting 12. First subtract the 10, then subtract 2.	Use a part-whole model to support the calculation. $\begin{array}{r} 19-14 \\ 19-10=9 \\ 9-4=5 \end{array}$ $\text { So, } 19-14=5$
Subtraction bridging 10 using number bonds	For example: 12-7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts. 7 is 2 and 5, so I take away the 2 and then the 5 .	Represent the use of bonds using ten frames. For 13-5, I take away 3 to make 10, then take away 2 to make 8.	Use a number line and a part-whole model to support the method. $13-5$
Year 2 Subtracting a singledigit number bridging 10	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.

	35-6 I took away 5 counters, then 1 more.	$35-6$ First, I will subtract 5, then 1.	$\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10 . $\triangle \theta \not Q \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ 8 subtract 6 is 2. So, 8 tens subtract 6 tens is 2 tens.	Use known number bonds and unitising to subtract multiples of 10 . $10-3=7$ So, 10 tens subtract 3 tens is 7 tens.	Use known number bonds and unitising to subtract multiples of 10. 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a singledigit number	This may be done in or out of a place value grid.	This may be done in or out of a place value grid.	Understand the link between counting back and subtracting the 1 s using known bonds. $\begin{gathered} 39-3=36 \\ 9-3=6 \end{gathered}$
$\begin{aligned} & \frac{2 \text { digit }-2}{\text { digit }-} \\ & \frac{\text { mental }}{\text { Start with }} \\ & \text { no } \\ & \text { exchanging } \\ & \text { and a pre- } \\ & \text { labelled } \\ & \text { number line } \end{aligned}$		$84-36$ 84	$\begin{aligned} & 84-36=48 \\ & 48=84-36 \end{aligned}$

Recognising and making equal groups	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Recognising and making equal groups Children draw and represent equal and unequal groups.	Describe equal groups using words Three equal groups of 4 . Four equal groups of 3 .
Finding the total of equal groups by counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s	There are 5 pens in each pack ... 5...10...15...20...25...30...35...40...	100 squares and ten frames support counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s. Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	$\begin{aligned} & 2,4,6,8 \ldots \\ & 5,10,15,20 \ldots \\ & 10,20,30,40, \ldots \end{aligned}$
Year 2 Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication. Use a number line and write as repeated addition and as multiplication.	$\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$

Using arrays to represent multiplicati on and support understandi ng	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	$5 \times 5=25$
Understandi ng commutativ ity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	$\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Learning $\times 2$, $\times 5$ and $\times 10$ table facts	Develop an understanding of how to unitise groups of 2,5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	Understand how the times-tables increase and contain patterns.

Using commutativ ity to support understandi ng of timestables	Children to understand there are 6 groups of 4 pens. There are 4 groups of 6 rolls. Both totals can be worked out using $6 \times 4=24$ or $4 \times 6=24$	Relate timestable facts to commutativity $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	I need to work out 4 groups of 7 I know 7X4=28 Sol know 4 groups of 7 is 28 and 7 groups of 4 is 28
Understandi ng and using timestable Y3 (3,2,4,8) Y4(up to12X12)	Learning the timestables as groups of 3 groups of 5 batteries is 3×5 11 groupps of 3 keys is 11×3 Make links to commutativity Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$ Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$	Understand how some timestables are related through repeated doubling $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ Represent the relationship between the $\times 9$ table and the $\times 10$ table.	Understand the relationship between related multiplication and division facts in known times-tables. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$ Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table 1 know that $7 \times 5=35$ so 1 know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$

	$4 \times 12=40+8$	$\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$	
Using known facts to multiply 10s, for example 3×40	Explore the relationship between known times-tables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	Understand how unitising 10s supports multiplying by multiples of 10 . 4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	Understand how to use known times-tables to multiply multiples of 10. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$

Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	$3 \times 4=12$ $3 \times 400=1200$ 90190109	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2800 \\ & 400 \times 7=2800 \end{aligned}$
Multiplying by 10,100 and 1,000 Including multiples of 10	Use place value equipment to multiply by 10,100 and 1000	Understand the effect of repeated multiplication by 10. IIIIIIIII	Understand how exchange relates to the digits when multiplying by 10 , 100 and 1000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10= \\ & 17,000 \end{aligned}$
	Use place value equipment to explore multiplying multiples of 10 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens.	Use pictures of place value equipment to represent how to multiply by multiples of 10,100 and 1000 . $\begin{array}{ll} 4 \times 3=12 & 6 \times 4=24 \\ 4 \times 300=1200 & 6 \times 400=2400 \end{array}$	Use known facts to multiply and make links between numbers. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4000-20000 \\ & \\ & 5000 \times 4=20000 \end{aligned}$

Multiplying 2-digit numbers by 2-digit numbers	Partition one number into 10s and 1s, then add the parts. $23 \times 15=?$ Tricicl $3 \times 15=45$ There are 345 bottles of milk in total. $23 \times 15=345$	$28 \times 15=?$ $28 \times 15=420$	Use column multiplication, ensuring understanding of place value at each stage. $\begin{array}{r} \mathrm{TO} \\ \quad 27 \\ \times \quad 16 \\ \hline 162 \\ +270 \\ \hline 432 \end{array}$
Multiplying up to a 4digit number by a 2-digit number		Use an area model alongside written multiplication.	Use compact column multiplication with understanding of place value at all stages. Method I

	each person. Keep going until all the objects have been shared They get $5 \cdots$ each. 15 shared equally between 3. They get 5 each.		
Grouping equally	Understand how to make equal groups from a whole. 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $12 \div 3=4$ $12 \div 4=3$ $12 \div 6=2$ $12 \div 2=6$ Understand how to relate division by grouping to repeated subtraction.	$12 \div 3=4$

		There are 4 groups naw. 12 divided into groups of 3 . $12 \div 3=4$ There are 4 groups	
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10 . Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ I used the 10 times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30 , so I know that 30 divided by 10 is 3 . $3 \times 10=30 \text { so } 30 \div 10=3$
Year 3 Understandi ng inverse operations and the link with multiplicati on, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4 . There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$ Represent the different multiplicative relationships to solve problems requiring inverse operations.	Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$

	I have 28 in total. I made groups of 4. There are 7 equal groups.	$12+3=$ \square $12+$ \square \square) $3=12$ $\square+3=12$	
Understandi ng remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. IIIIIIIIIIII $\square \square \square \mid$ There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder. Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24 , and 1 that cannot be shared. (a)	Use images to explain remainders. $22 \div 5=4$ remainder 2 Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2 Understand how partitioning can reveal remainders of divisions.	Understand that the remainder is what cannot be shared equally from a set. $22 \div 5=\text { ? }$ $3 \times 5=15$ $4 \times 5=20$ $5 \times 5=25 \ldots$ this is larger than 22 So, $22 \div 5=4$ remainder 2 $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23$ remainder 3
Understandi ng remainders	Understand remainders using concrete versions of a problem. 80 cakes divided into trays of 6 .	Use short division and understand remainders as the last remaining 1 s .	

	80 cakes in total. They make 13 groups of 6 , with 2 remaining.	In problem solving contexts, represent divisions including remainders with a bar model.	$\begin{aligned} & 683=136 \times 5+3 \\ & 683 \div 5=136 \mathrm{r} 3 \end{aligned}$
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising. Make 6 ones divided by 3 . Now make 6 tens divided by 3 . What is the same? What is different?	Divide multiples of 10 by unitising. 12 tens shared into 3 equal groups. 4 tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=\text { ? }$ 180 is 18 tens. 18 divided by 3 is 6 . 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide.	Represent divisions using place value equipment.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$

number，no remainders	पाताITH पा川mात णायाim サाIाITा $48 \div 2=\text { ? }$ First divide the 10s． Then divide the 1 s ．	I need to partition 42 differently to divide by 3. $42=30+12$ $42 \div 3=14$ $60 \div 2=30$ $8 \div 2=4$ $30+4=34$ $68 \div 2=34$	Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$ I need to partition 42 differently to divide by 3 ． $42=30+12$ $30 \div 3=10$ $12 \div 3=4$ $\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2－digit number divided by 1－digit number， with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups． There are two groups of 14 and 1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ \square $29 \div 2=14$ remainder 1	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ $17 \div 5=3$ remainder 2 $67 \div 5=13$ remainder 2 There are 13 children in each line and 2 children left out．

Dividing 2－ digit and 3－ digit numbers by a single digit by partitioning into 100s， 10s and 1s	Partition into 10s and 1s to divide where appropriate． $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s，10s and 1s using Base 10 equipment to divide where appropriate． $39 \div 3=\text { ? }$ 3 groups of 1 ten $39=30+9$ $30 \div 3=10$ $9 \div 3=3$ $39 \div 3=13$ $100 \div 2=$ \square $40 \div 2=$ \square $6 \div 2=$ \square	Partition into 100s，10s and 1s using a part－whole model to divide where appropriate． $\begin{aligned} 142 \div 2 & =? \\ 100 \div 2 & =50 \\ 40 \div 2 & =20 \\ 6 \div 2 & =3 \\ 50+20 & +3=73 \\ 142 & \div 2=73 \end{aligned}$
Dividing 2－ digit and 3－ digit numbers by a single digit，using flexible partitioning	Use place value equipment to explore why different partitions are needed． $42 \div 3=?$ I will split it into 30 and 12，so that I can divide by 3 more easily．	Represent how to partition flexibly where needed． $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 ． $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required． Understand that different partitions can be used to complete the same division．

Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=\text { ? }$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & 0 \\ & 0 \end{aligned} \begin{array}{rrr} 6 & 6 \\ 7 & 3{ }^{3} 8{ }^{3} q & 42 \\ 3,892 \div 7=556 \end{array}$ Use multiplication to check. $556 \times 7=\text { ? }$ $6 \times 7=42$ $50 \times 7=350$ $500 \times 7=3500$ $3,500+350+42=3,892$

		1.5 is 1 one and 5 tenths. This is equivalent to 10 tenths and 50 hundredths. 10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5 hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths. $1.5 \div 10=0.15$	0 \bullet Tth Hth Thth 8 \cdot 5 0 \bullet 0 \rightarrow $8.5 \div 100=0.085$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So. $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places. $8 \longdiv { 4 \cdot 2 4 }$ $0 \cdot$ $8 \longdiv { 4 \cdot 4 2 4 }$ $0 \cdot 5$ $8 \longdiv { 4 \cdot 4 ^ { 2 } 4 }$ $0 \cdot 5 \quad 3$ $8 \longdiv { 4 \cdot { } ^ { 4 } 2 { } ^ { 2 } 4 }$
Understandi ng the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third.	Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$

